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An algorithm has been developed which extends the scope of
spectral methods to include solution of non-canonical channel flows
arising from more complicated wall geometries. This significantly
broadens the direct numerical simulation data base and its range
of application, providing an accurate too! for the investigation of
flows over three-dimensional surfaces which move in time. Through
a time-dependent, curvilinear transformation a general domain is
mapped to one which permits spectral representation of the soiution
and preserves exact boundary conditions. Beginning with the Na-
vier-5tokes equation in general tensor form, application of a metric
operator effects the transformation. The primitive variables are rep-
resented pseudospectrally (Fourier in the stream- and spanwise
directions, Chebyshev wall-normal). Covariant differentiation gen-
erates variable coefficient terms in the equations for pressure and
velacity, necessitating an iterative solution scheme. Standard
benchmark tests validate fiat-wall flow simulations. Static and dy-
namic tests of one-dimensional flow over a perturbed wall confirm
the accuracy of the time-dependent transformation. Low Reynolds
number simulations replicate the appropriate qualitative features of
Stokes flow across two- and three-dimensional wall topographies.
Results from a higher Reynolds number simulation of separated
flow behind a three-dimensional Gaussian protuberance match well
with an independent solution from Mason and Marton who have
used a finite-difference method. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Owing to its accuracy and efficiency and the suitability of
its solution form (for analysis), a pseudospectral (PS) approach
has become the method of choice for many problems in compu-
tational fluid dynamics. Three-dimensional flow between two
flat boundaries {channel flow) has been studied extensively
using the spectral technique and the results have contributed
to the understanding of transitional flows [1-31 and turbulent
boundary layer dynamics [4—6]. But given the range of com-
plexity of problems in the field, particularly those borne by
industry, there remains a shortfall in the scope and flexibility
that available computational tools provide.

Generalizing the three-dimensional channel flow problem by
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specifying more than the simplest domain has heretefore forced
either an abandonment of the spectral method for less accurate,
often prohibitively expensive finite-difference techniques [7,
8] or an adjustment from direct numerical simulation (DNS) to
modeling [9, 10]. Domain decomposition and available hybrid
methods such as the spectral-element approach [11] place sub-
stantial restrictions on the allowable topographies. This article
describes a psendospectral method which, coupled with a curvi-
linear coordinate transformation, permits direct solution of the
Navier—Stckes equation in a three-dimensional domain de-
limited by non-trivial, time-dependent boundaries.

Motivation for the work comes out of an ongoing investiga-
tion of near-wall turbulence aimed at effecting drag reduction
by controlling the wall-layer dynamics [12~14]. The algorithm
was developed to serve as a tool in this effort (smart skin
simulation): an actuator on the wall responds to a flow through
sensors and a feedback control loop, adjusting its height in
order to steer the wall region dynamics (the bursting processes
which are signatures of turbulent fiows and primary sources of
drag). More generally the method extends the range of applica-
tion of direct simulation with spectral decomposition to a hith-
erto inaccessible class of problems.

Designating 4 domain with flat, stationary boundaries as
the canonical channel, wall perturbations in the non-canonical
channel may range from 0 to 10% of the total channel height, the
maximum depending upon the wall topography. All simutations
begin with parabolic flow between two flat walls. The top wall
remains flat; the bottom wall perturbation is (%, &, £). In
Euclidian space the streamwise, wall-normal, and spanwise
directions are denoted as X, X7, and 53, respectively. Wall geom-
etries are restricted to Fouder-transformable functions,

The equation to be solved (non-dimensionalized and in rota-
tional form) is

dn 1

—=-Vpt+tux(Vx — W .

> Vo +uXxX(VxXu)+ ReVu (1.1)
i
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The Reynolds number (Re) is based on mean streamwise veloc-
ity at mid-channel (Uy) and on the channel half-height (Lo):

_ Ualy

v

Re 1.3

Units of velocity, length, and time are normalized then by Uy, Ly,
and Lo/ Uy, respectively. The velocity u and modified pressure p
may be represented spectrally (Fourier in £, and %, Chebyshev
in £,). The solution is therefore periodic in £, and ;. The domain
consists of solid boundaries at £ = 21 (in the case of the
simple channel), requiring no-slip, no-penetration boundary
conditions on velocity. The velocity vector is

+o  tx 4=

u(fl,fbfht): E 2 E

ky=— k=0 k=0
aky, ks, ks, DS (etbihelmivh . (1.4)

81.(%;) = cos[k cos ™' (#)]. (1.5)

Because n is a real-valued function, c.c. in {1.4) is the com-
plex conjugate. Unless otherwise specified “‘mean’” is defined
as the value of the coefficient a corresponding to the zeroth
Fourier mode combination (k5 = 0). Viscosity is constant and
flow is solencidal (incompressible):

Vou=0. (1.6)

Modified pressure is defined as a scalar function which, when
substituted into (1.1), satisfies (1.6) everywhere in the domain
Vip=V-[ux (VX)) {1.7)

Flow is sustained {viscous effects are overcome) through the
inclusion of a mean streamwise pressure gradient: cither a
specified constant or a variable value which maintains a constant
mass flux. In the case of steady, parabolic flow between two
flat walls, the gradient (dp/dx, = —2/Re) yields a constant
mass flux in the streamwise direction and this is the value
specified when using the constant gradient option. A time-
dependent gradient which maintains constant mass flux for any
flow is derived by integrating the Navier—Stokes equation over
the Euclidian domain and enforcing the following condition:

JLEJH
0 Ja1

2. THE ALGORITHM

1, O

S A dE s = 0. (1.8)

This section contains a description of the algorithm including
the coordinate transformation, the discretization and the itera-
tive method, the prescription of the boundary conditions, the
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influence matrix formulation, the tau correction, and the time
integration method.

2.1. The Coordinrate Transformation

The equations of motion are solved by first transforming
from Euclidian space to a generalized coordinate frame [15—
17]. More than a mapping of the domain, the transformation
reconstructs the solution vectors, so that all boundary conditions
remain exact. The physical frame is represented in Cartesian
coordinates (£) and the computational frame in general curvilin-
ear coordinates (x,). The transformation is defined by the follow-
ing relations:

Hn=x
5= T(x), X2, X3, Xa)

Fo @R b h

2.1
2 2.1)
,f3=X3
£i=x, (time).
The transformation tensor is
S
P= 2.2
¢ ax, (2.2)
and in matrix form,
1 0 0 0
ar T o o
Cc=190x 9dx, dx; dox (2.3)

0 0 1 0
o 0 0 1

Because spatial and temporal derivatives in the Navier—
Stokes equation are distinct, the time derjvative term may be
treated separately and a three~-dimensional metric based on the
space variables defined:

3
8= E clef. (2.4
k=1

The transformation is non-orthogonal: diagonal entries of the
metric are of order one, off-diagonal are of order h or i. The
corresponding symmetric matrix is



FIG. 1.

PSEUDOSPECTRAL DNS OF NON-CANONICAL CHANNEL FLOW
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normal to the lower wall, The transformation is non-orihogonal.

The Jacobian is

1+ (B—T
0x,

ar at
X, 9%,
ar ar
00Xz iy

srar
ax1 axz

ﬂy
X,

T ar
X3 0Xp

j

ar ar
ax BX3
ar ot
axy 8x3

T 2
1+ (_6)
8)4:3

1=l6i"={ci=5L:

(2.5)

(2.6)

| | denotes the determinant. Contravariant components of the
velocity vector transform as follows:

o= ol

(tj=1,3)

{2.7)

From the definition of the transformation tensor (2.2), a
change in orientation is ascribed only to the wall-normal compo-
nent of velocity (Fig. I):

1 1

T =u
2T

GX5
P=u

it
ax 2

1+8Tu2+6_T_u

3
ax 1

In general tensor form the Navier—Stokes equation is

(2.8)

Front views of the physical coordinate frame (left) and the computational frame (right) showing the transformation of a representative vector,

i o . 1
’a_u: +owuly = — (g, + o (y + )y

i Re @9

A comma with index denotes covariant differentiation (in the
computational frame):

o aut ‘
ij = E\’: + F}ku“ ) (210)
I .| d d 0
i = D) g [5‘; {gu) + ‘a;‘; (&) — Ex"; (3;1«)] s 2D
!

fin (2.9) denotes time in the Euclidian frame. In the computa-
tional frame, the time derivative becomes

du’_ o OTou 2.12)
ar ot dt dx;

The foliowing identity is used to convert the equation to rota-
tional form:

wu's = g — u) + 2g%(u) .. (2.13)

The last term in (2.13) is absorbed by the pressure gradient.
With solenoidal flow, conservation of mass yields

. d .
Y= — =1, 2.14
i axi(fl!) 0 {2.14)

The solenoidal condition eliminates the second half of the vis-
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cous term in (2.9} and the final (continuous) form of the evolu-
tion equation for velocity is

Ju' oT du' -
e ey, — N -
ot at ax, e~ ) ~ 8

ija_p. +
ox

i

1 jkp i
'}g (giku,k),j .
(2.15)
Utilizing the fact that the metric commutes with the divergence

(covariant derivative) operator, (2.14) and (2.15) yield a relation
for pressure:

(#35),-

2.2, Discretization and the Irerative Method

(2.16)

o

ofT o' o
———=+ wig*(;, — u,w»)jl )

The solution {u. p} of (2.15) and (2.16) may be expressed
in wave space as an approximation of (1.4) with the ranges of
k, k», ky truncated to form a finite series of mode combinations
(18-20). The truncations are

= A_r‘_
k=0, 2 1
k=0, N, — 1 (217)
Ny N;
= —-— -} —=,
ks 2 L 2

N, 25 comrespond to the total number of grid points in each of
the three dimensions of discrete space. Likewise, the continuous
operators in (2.15) are approximated by their discrete counter-
parts:

aT ou’ . N
*ng; + u’g"‘(u}-‘k - uk!j) —> N(ll)
. op o
g¥-—— 4(p) (2.13)
dx;
L (gul), — (@),
Re !

A circumflex (") denotes spectral representation. fik;, ko, ks,
1) is a complex-valued vector of dimension (M,/2) X N, X Ni;
G(k,, ka1, ks, 1) is a complex-valued vector of dimension 3 X (¥/
2} X Ny X N3 N@@), §(i). and F(li) represent the convective,
gradient, and viscous terms, respectively. In discrete time,
(2.15) becomes

nntl

! — @

1
= N@@" — Gp"Y + — L@y (219
o (@) B Re @ (2.19%
n denotes position in time, The viscous term is treated implicitly
(backward Euler) to preclude a severe restriction on stability.
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The convective term is treated explicitly using a Runge—Kutta
scheme in which the term is advanced from position # to posi-
tion n + 1 in three substeps. In order to present the iterative
method with optimal clarity, a description of the fractional time
step (and concomitani nofation) is postponed unti] subsection
2.5. The time position for the pressure term (n + %) indicates
that the term is treated neither explicitly nor implicitly in the
conventional senses; it is computed so as to enforce the solenoi-
dal condition on velocity at the latest position in time. The
solenoidal condition is

G = 0; (2.20)
9 is the discrete divergence operator:
i — S3(). (2.21)

As the metric commutes under covariant differentiation, <
commutes with &£:

DPIL@E* ] = LIDB@)] = 0. (2.22)

% operating on (2.19), in conjunction with {2.2() and (2.22),
yields the equation for pressure:

DG = DN @] (2.23)
The left side of (2.23) is separated into an invertible part and

the remainder. Returning for the moment to continuous form,
the split is

2
(gu QE) Gy + [(guﬁﬂ)
dx; /e 0x; dx; dx;/ .

Denoting the discrete version of the invertible part as

sz
PP 6x,-:| . (224)

a*p
p 2
PR 223
the equation for pressure becomes
| 2
APIH” = DIN@M] + AP — DIGHT)], (2.26)

where s denoctes position in an iterative sequence; (2.26) is
equivalent to (2.23) in the limit as p,., — P,. The viscous
operator in (2.19) is split in an analogous manner:

E(h) = Al + [F() — AdD)). 227

And the evolution equation may also be expressed as an itera-
tive sequence:
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|
— _,5_1‘, ntl — fn Y
(1 = A) Bt = @7 + 8 [N(E")]

N (2.28)

r5 A ™
(- AN~ BESBIN,

(2.28) is equivalent to (2.19} in the limit as 4,,, — 0,. Parts 1
in (2.26) and (2.28) are computed once at the beginning of
each time step (and remain fixed during the iteration sequence};
parts 2 are updated after each iteration until the solution con-
verges. In wave space the operator A is

A=«xt+D?

)]

D" is the discrete representation of the second derivative (in
x,) operator. In connection with the three-substep Runge—Kutta
method, subsection 2.5 identifies the relative weight appor-
tioned 1o 8t in each term in (2.28) at each substep.

At each position in time » and in the iterative sequence &,
for each Fourier mode combination k, &, (2.26) and (2.28)
form a set of one-dimensional Helmholtz equations:

(2.29)

(2.30)

D+ ap=H (2.31)
(D*+ Aa=1H (2.32)

- . _ . Re
M=k, AMSk 5 (2.33)

f, are the right sides of (2.26) and (2.28), respectively. These
functions are known, consisting in general of products of deriva-
tives of {i and f and the metric coefficients. They are computed
in a multistep process: differentiation in wave space, multiplica-
tion by collocation in physical space with Fast Fourier Transfor-
mations (FFT) at each intermediate level. Multiplication in
physical space couples all Fourier modes of the solution within
the iterative sequence. The equations for pressure and velocity
are eliiptic. Taking in aggregate the subsystems corresponding
to each Fourier mode combination, separation of terms into the
invertible part and a remainder is equivalent to a Richardson
iteration method with a relaxation parameter of unity and pre-
conditioning, the preconditioning operators being A™' for pres-
sure and (A — (Re/80)™" for velocity,

The evolution equation for velocity (2.32) is separated into an
equation for each directional component of the vector, coupled
within the iterative sequence through the viscous terms in .
Thus, the system (2.31) and (2.32) becomes a set of four Helm-
holtz equations for cach &, &, s, n combination. The solution
(G, P) is a set of N,-dimensional vectors.
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n discrete Chebyshev space, the operator (P* + A) in (2.31)
and (2.32) forms a loosely banded pentadiagonal system of
dimensions N, X N,. Replacing two rows with prescriptions for
the boundary conditions determines the system. An equivalent,
more efficient form may be constructed consisting of two tridi-
agonal systems, one for the even Chebyshev modes, one for
the odd.

2.3. Boundary Conditions

In general, displacement of the lower wall constitutes a
change in the control volume. And with periodic conditions in
the stream- and spanwise directions (no net mass flux), the
solenoidal condition mandates that fluid be added or extracted
through the upper wall at a rate commensurate with the velocity
of the lower wall ( L‘Ezleﬂ = gh/on. The horizontal components
of velocity are zero at both walls. Therefore, the prescribed
boundary conditions for velocity (in the computational
frame) are

uiix2=1'l =0

(&) (5

1

(2.34)

uz
Ll3

Il

Iz;:|
e
Xy k)

Boundary conditions for pressure are determined indirectly
from the solencidal condition via an influence matrix technique.
The divergence of velocity (in continnous form) is

1 -1
Ly (B_T)
t'li ﬂxz
T o*T

(2.35)
N 3 -
[u (le GX2) +u (a.x} 6x3)] 0.

The boundary conditions on u' and :* along with (2.35) yield

_

o
r')x,

sz

M'i;'

e

= 0.
BX2

Xy=l

(2.36)

These conditions correspond exactly to those of the canonical
channel and the same methods may be brought to bear (with
some modification} [21]. The idea is to find boundary conditions
for pressure which enforce (2.36). Returning to discrete wave
space, the following relations are defined for pressure and the
second component of velocity (denoted here as ¥):

(2.37)
(2.38)

The constants ¢, ; are independent of x; and therefore depend
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only upon k;, ky. For each Fourier raode combination, a pair of
constants which satisfies the following two-dimensional system
will define a ¥ which satisfies (2.36):

< Deflx2=+f Di}Z,.rlr-H -l Di}p'rzr-f‘i' ’
=—{ ) A ; (239)
& Dvl ,xz—-l DVZ‘.\'1=—I Dvp'x2=—l

D is the discrete representation of the first derivative (in x,) op-
erator:

i—>D.

P (2.40)

The wall-normal component of the gradient operator may be
split into an operator D which commutes with ¢, and the re-
mainder:

R(p) = [9(D)] -&; — D(P). {2.41)

The separate solutions (¥, P),:, must coliectively satisfy the
original eguations for pressure and velocity. In order to consoli-
date terms, parts 1 of (2.26) and (2.28) are, respectively,

& = QN @"]

B, =@" + SN

(2.42)
(2.43)

f,: are computed from values of the solution at time position
n and they are not iterated upon; the remaining terms (parts 2)
are computed from values at time position # + | (via the
iterative sequence). Dropping the time position notation in these
remaining terms in (2.26) and (2.28), the equations for pressure
and the second component of velocity are

APt = + AP ~ D[G(H) (2.44)
6t sHL — & éi _H 55
(1- —R—EA> ¢l = [rz + Re(ﬂi Axi )]
e, — St (D + RY(PD].  (245)

Noting that A commutes with ¢;, equations for (¥, P), ., which
satisfy (2.44) and (2.45) arc

AP = £, + Ap; — DIEP; + cip) + cip)]  (2.46)
Ap =0 (2.47)
AP, =0 (2.48)
(1 - % A) it = [f'; + %&E(ﬁ‘)] )
-t [L A% + D(ps! ]
Re
+ SHR(HT + eif, + )] (2.49)
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(1 . A) & = — D) (2.50)
Re
St w N
(I - —-‘A) Va = —6f[D(p2)J (2.51)
Re

The solutions (¥, §),, are not iterated upon; however, the
constants ¢, are, so that the boundary conditions (2.36) are
enforced at each position in the iterative sequence. Boundary
conditions for the separate solutions of wall-normal velocity
(for each Fourier mode combination) are

il}p'xz="i = ﬁ2|x2=:1

~

¥z =0 (2.52)

i}‘ilxiﬁ b | = 01

and boundary conditions for the separate solutions of pressure
(for each Fourier mode combination) are

f’p'.\:fﬂ :O’ ﬁp,xﬁ‘[ = 0
f’lleﬂ =0 I‘il{xfﬂ =1 (2.53)
ﬁ2|x2=+1 = ]’ f’?.lxzz—} = 0

The conditions on P, ; ensure that a solation exists for each
¢\2: the determinant of the influence mairix in (2.39) is guaran-
teed to be non-zero. For the zeroth Fourier mode combination
(k13 = 0) the equatious for p,,, (2.47} and (2.48), reduce to
DA(p, ;) = 0. The influence matrix determinant is then zero for
any boundary conditions on §,,, guaranteeing that ne non-
trivial solution exists for ¢,»: the method breaks down. This
problem vanishes in the case of the canonical channel becanse
the solenoidal condition mandates that mean wall-normal veloc-
ity is zero everywhere in the domain.

Under the coordinate transformation, mean wall-normal ve-
locity is, in general, non-zero and must be computed (in some
way other than the influence matrix method). Mean pressure is
determined from the divergence of the Navier—Stokes equation
(2.46), using the boundary conditions for p, (2.53) and ¢,; =
0. Mean wall-normal velocity is determined directly from the
solenoidal condition:

‘T

et _ _.az - i ; PT
<Ex—2> B <<6x2) [“ (axl ze) +u <6x2 axg)]>. 2.54)

The bracket { ) denotes a mean quantity. Two boundary condi-
tions are required for (#*). Because mean pressure and wall-
normal velocity are each computed from equations which con-
tain the incompressibility information, replacement of two rows
(rather than one) in the system corresponding to {2.54) with
two boundary conditions (rather than one) does nol compromise
the divergence-free condition.
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The equation for mean pressure (2.46) is obtained from the
divergence of the Navier—Stokes equation, part of which comes
from the first derivative (D) of the wall-normal component of
thatequation (2.49). Through this operation the row correspond-
ing to the zeroth Chebyshev mode in (2.49) drops out and the
information is iost. Mean wall-normal velocity is computed
from the continuity equation (2.54) which contains no informa-
tion from the Navier-Stokes equation. Therefore, the wall-
normal component of the Navier—Stokes equation 1s not satis-
fied for k;; = 0. All other Chebyshev modes of the mean
wall-normal component (and all modes of the mean stream-
and spanwise components) of the equation are satisfied. The
solenoidal condition is enforced exactly for all Chebyshev
modes. Exact enforcement of the solenoidal condition for the
higher Fourier modes is described in the next section.

2.4, The Tau Correction

The influence matrix method effectively uncouples the equa-
tions for P from those for d. In wave space the Helmoliz
equations for pressure and velocity, for each ky,ks, s, n combina-
tion, consist of two tridiagonal systems, one for the even Cheb-
yshev modes and one for the odd. The boundary conditions for
each pressure and velocity solution uncoupie as well, into one
equation for the even modes and one for the odd. The odd/
. even boundary condition equations, which are full rows in
matriz form, replace the rows corresponding to the highest
Chebyshev mode in the odd/even tridiagonal systems. Each of
the solutions then has associated with it two errors, 772"\
incurred by the replacements. The equation for pressure is
obtained from the divergence of the evolution eguation (and
imposition of the solenoidal condition on velocity). In the case
of the canonical channel, the divergence of any vector F is

277ik|

) =~

P+ D) + (2.55)

£

Errors 7%72%7! in the systems for wall-normal velocity are
propagaied by the derivative operator I into all modes in the
systems for pressure. And because the solution is computed
sequentially ( — ¥) via the influence matrix method, pressure
no longer enforces the solenoidal condition. For the simple
channel, a tau correction method has been devised to circumvent
the problem [20, 21]. Fortunately, the divergence operator in
the curvilinear coordinate frame (2.35) propagates these errors
in exactly the same manner, so that the technique may be used
without modification. Summarizing the method, a tau solution
is defined by the following set of equations:

(D* + A)p, =1 (2.56)

(D + Xv, = 1D 2.57)

P, and 9, are zero at the walls. The parameters A, ; are defined
by (2.33). The right side of (2.56) is defined as
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2 (k=0
f*zg%ké; c"‘2={ e );
ck 1 (k#0)
' {Nz —2 (K even) (2.58)
UM =1 (kodd)

And with 7);7*"2" denoting the tau errors in the systems for
V.12 the corrected solutions are

(2.59)
(2.60)

flﬁﬁ_: = f’fz’.:,z + Tﬁ%uf'l?

Ak, — ok ey +1) o g
Vaz =V, t 7,0 Vo

The new wali-normal velocities satisfy modes 0 through
N, — 3 of the original equations, and they satisfy the original
equations (with the tau error) at the two highest modes. The
new pressures enforce the solenoidal condition at modes 0
through N, — 3. With enforcement on the boundaries the veloc-
ity field is exactly solencidal. The solutions (¥, p), are not
iterated upon; however, the tau errors 75:7*%7! are, so that the
solenoidal condition is enforced at each position in the iterative
sequence. Figure 2, a flowchart of the entire algorithm with
equation numbers referenced, distinguishes clearly which terms
lie within the iterative loop and which do not.

2.5, Time Integration

Velocity in the evolution equation is advanced in time by
means of a three-substep Runge—Kutta method [22]. While the
viscous term is fully implicit in time, it is treated semi-implicitly
within the context of the iterative sequence. However, the
method of time integration may be.described most clearly by
dispensing with the fact that an iterative sequence exists and
considering only advancement from the converged solution at
time position » to the converged solution at time position # +
1. Denoting the quantity to be advanced as i, the representative
evolution equation is

== = Gip, 1)+ L, 1) + N o) (2.61)
G.(p, ), L{u, £}, and N(u, #) are the pressure gradient, viscous,
and convective terms, respectively. Through the time depen-
dence of the coordinate transformation, all of the terms depend
explicitly upon time. The discrete version of the equation is
rtl __ un
= HG,—([?RHQ, InH) + L(unfl, ftﬁ'])
Ar (2.62)

+ N(H", !n-f]).

i

As a compromise between storage limitations and accuracy,
a Runge—Kutta method is employed in which only one previous
substep term has to be saved. The solutton is advanced from
position n to position # + 1 in three substeps:
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FIG. 2. A flowchart of the algorithm. The equaticn corresponding to ¢ach
computed lerm is referenced by number. Note that because ¥;; depend upon
Ar, these selutions must be placed within the time sequence, but still outside
the iteration sequence, when using the variable step size mode. .

w=u"+ M- G+ yd' + LN
a' =+ At{—eGl — BiG + vl + HNT + N
Ut =t At GYT = BGE LM+ LN+ N
{2.63}

The following relations enforce the solenoidal condition at
each substep:

CARLSON,; BERKOQZ, AND LUMLEY

TABLE 1
R-K step Ar a B ¥ £ n £
i 4 i - 4 it — ¢
ii & # -4 & & - &
i i H —f 1 H —fx e
o =0, Bi=m
;=0 = (2.64)
o=

The independent variable ¢, explicit in al! the terms, is advanced
in an analogous manner:

F=r+ At
f=r+At§
rnﬂ — Iii 4 Af §3.

(2.65)

The sizes of each substep for the viscous term and the sizes
for the convective and gradient terms are made equivalent by
the following relations:

Al = oy =y,
AP =ay + B =y, (2.66)
A=+ =

AL+ A+ A = Ay, (2.67)

With the lower wall accelerating the boundary conditions
become explicitly dependent upon time. Denoting wall-normal
velocity at the walls as v and a constant acceleration as a, the
boundary conditions are advanced in time as follows:

vi=p" + g A

vt = pi+ g A (2.68)

pil = pil 4 g Af

Equations for the parameters are derived by Taylor expanding
(2.62), Taylor expanding {2.63), and matching terms. Values
of the parameters are given in Table L

The purely viscons and two of the mixed viscous-convective
terms of order (Ar)* cannot be matched: for low Reynolds
number flows the error is approximately (Af)*. In the limit as
the Reynolds number approaches infinity, the error approaches
(Af*. The stability condition is based upon the explicit time step
and is determined by a conventionally defined CFL number:

CFsz[MH_“LJ_’i]A,;

A An T A (2.69)
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TABLE 11

Flow parameters Box dimensions

No. grid points

Re = 100 Ly =dr N =16
C=075 L,=12 Ny =7
e = 0.075 Ly =2n Ny =16

Note. See Figs. 3 and 4.

Axy,; are the grid spacings. The theoretical limit of the CFL
number is V3. Two modes of operation are available. In a
fixed mode the time step size s specified at the onset and
remains constant. In a variable mode the step size finds its
maximum based on the siability condition: Af is derived from
(2.69) using the CFL limir

3. TESTING

This section contains a description of all testing including
the benchmark tests which validate canonical channel fiow
simulations, the static and dynamic tests of one-dimensional
non-canonical channel flows, the two- and three-dimensional
Stokes flows across perturbed walls, and the separated flow
over a three-dimensional protuberance.

3.1. The Canonical Channel

First is a test of the stability of Poiseuille flow in a flat-
walled channel at a low Reynolds number (Table II). Stability
is confirmed and the decay rate of mean flow perturbations is
compared with results from the same test conducted by Yang
{23]. The initial velocity field is

hixy, X, 1) = C(L — x5

L. i daxy . (2
+€ 5‘ sin(wx;) cos (—E—l) sin (%:3)

30
uy(xy, X2, X5) = —€fl + cos(mx;)] sin (fﬂ) sin (__2”3)
Ly L,
us(xy, X2, %3} = —€ % sin (4———:‘) sin(wx;) cos (2:3)
Flow should converge to a parabolic profile:
Uilx) =1- 1. (3.2)

The flow is maintained by imposing first a constant mean
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FIG. 3. Stability of low Reynolds number Poiseuille flow in a Hat-walled
channel {Table 11} with a constant mean streamwise pressure gradient. Shown
are profiles of mean streamwise velocity at times T = ©, 5, 20, 150 (bottom)
and resulis of an identical test conducted by Yang [23] (top).

streamwise pressure gradient (Fig. 3) and second a constant
streamwise mass flux (Fig. 4). Yang’s algorithm is also pseudo-
spectral and uses a hybrid method of time integration, but with
a Crank-—Nicholson prescription for the viscous term and an
Adams—Bashforth for the nonlinear (as opposed to Backward
Euler and Runge-Kutta). Notwithstanding these differences,
the convergence rates are almost identical. As is evident from
a comparison of the rates of Fig. 4 with those of Fig. 3, constant
mass flux makes for a more robust flow.

Second is a test of the decay rate of small amplitude distur-
bances in a plane-parallel shear flow: comparison of values
obtained by direct simulation with values derived from the
Orr—Sommerfeld equation. The mean flow is parabolic and
disturbances may be either two- or three-dimensional. The
streamwise perturbation velocity is

Hilxy, xo, X3, £) = €gu{xa)e¥ coslax, + B — v.r + Pl

3.3)

o and B correspond 1o the Fourier modes of the chosen distur-
bance. Given g sufficiently small initial perturbation £, an eigen-
value problem is derived from the Navier-Stokes equation by
normal mode and linear stability methods [24, 25). p(x,) and
¢ (x;) are the eigenfunctions in polar form, y = vy, + iy, the
eigenvalues. Using computed eigenfunctions the amplitude de-
cay rate y; and the rate of phase change vy, may be calculated
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FIG, 4. Stability of low Reynolds number Poiseuille flow in a flai-walled
channe] (Table IT with a constant streamwise mass flux. Shown are profiles of
mean streamwise velocity at times T = (), 2, 5, 20 (bottom) and results of an
identical test conducted by Yang [23} (top).

from the Orr—Sommerfeld equation and compared with values
from the direct simulation, which are determined from the
streamwise velocity:

wi(xy, X2, %3, 1) = 2a(xy, 1) cos(ax; + Bx3) (3.4)

7 2by(n, O sin(axy + Br);

(a1, b;) 15 the Fourier coefficient, real and imaginary part, corre-
sponding to the perturbed mode. In polar form (3.4) becomes

Uy, X2, X3, 1) = ri(xg, ) cos{ax; + Bx; + 6(xy, 1]

ri(x, £ = 2la(x, F + byx, 117

| Bl t)
8,(xy, 1) = tan [_al(xz, t)] .

(3.5)

The amplitude decay rate v, is determined by equating (3.3)
and (3.5):

2 ou! 2
i + (aﬁ—“—) = W) + (a-fﬂ) = [ep(r)Pe®  (3.6)
Bx; axl

CARLSON, BERKOOZ, AND LUMLEY

TABLE 111

Flow parameters Wave number  Box dimensions  No. grid points

Re = 1300 a=1 L=2r7 N, =16
€=2198X10° B=0(2D) L, = N, = 33
8= —-1(3D) Ly =12n N, =16

. Z
fy{xz, O)F + [avl M]

! ox
Yi T T
T 3 2
[0 TOF + [a" b T) T)]
6x1
— 2(Inlep(x7)] — Inlep (e}l (3.7)
_ 1 a%(xls O) + b2|(X3, 0)
[T [a%(xz, e
The rate of phase change v, is determined similarly:
it
ax,
— = tanfewy) + Bx; + B(x, 1)
]
= tanfoex, + By + dlx) — vyt (3.9)

:l ] Bz, 0) B bi(xy, T) )
¥ T(ta“ [a«xz,m] tan [a.(xa,r)} - 610

Each disturbance evolves from an initial time 0 to any arbitrary
time 7. Parameter values are listed in Table Il

For the two-dimensional disturbance, predicted values of y;
and 7y, are —0.2820 and 0.3263, respectively. Relative errors
in the computed values range from 0.05% in the middle third
of the channel to 0.6% near the walls. For the three-dimensional
disturbance, predicted values of y; and vy, are —~0.2823 and
0.4013. Relative errors in the computed values range from
0.07% in the middie third of the channel to 2.3% near the walis.

3.2. The Non-canonical Channel: One-Dimensional Flows

3.2.1. Static tests.  In the first test of the coordinate transfor-
mation, the domain is defined by a flat wall at the top and a
bottom wall which varies sinusoidally in the spanwise direction
(invariant in time and in the streamwise direction). The pertur-
bation of the bottom wall is

. [ 2mx
h{x; = € sin (—L;_s) .

In the limit as Re - (), the convective term in the Navier—Stokes
equation becomes negligible (Stokes flow). With no streamwise

3.11)
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TABLE IV
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TABLE V

Flow/wall purameters  Time parameters  Box dimensions  No. grid points

Flow/wall parameters Time parameters Box dimensions No. grid points

Re=2 At = 0.] Li=r1 N, =16 Re=2 Ar =01 Lo=x Ny =16
=0.12 T=10 L,=2 N, =33 £, =012 T == 30 =2 N, = 33
£=10 Li=gx Ny =32 &y = 001 L=1 Ny =32
Nore. See Fig. 5.
dependence the Navier—Stokes equation admits a steady solu-
tion to the following Poisson equation fin Euclidian space):
. 2mx
h(xs, £) = &(f) sin (—Li) (3.14)
Py, Fu d 3
T T pe (221, (3.12)
ax3 ax3 ax,

{dp,/a5) is the prescribed mean streamwise pressure gradient,
In the computational frame the metric tensor complicates the
equation considerably. However, a numerical solution is ob-
tained by representing the streamwise velocity i, in wave space
and constructing a linear sysiem:
A, =1 (3.13)

Each row in the vector Aii, corresponds to the left side of
{(3.12} at a specific grid location in the two-dimensional domain.
Because of the one-to-one correspondence between the number
of grid points and the number of Fourier—Chebyshev modes,
the system is determined: dimenstons of the matrix A are (N, X
N iy and £ are (&, X Nj)-dimensional vectors. Rows in the
system corresponding to grid locations on the boundaries are
replaced with the boundary conditions, i), —., = 0. Using the
nurmerical solution as an initial condition, flow is advanced in
time to verify the steady solution. See Table IV.

After 10 time units (100 steps), the solution remains within
round-off error (107") of the initial condition. Spectral accuracy
is obtained: the error is that incurred by the FFT subroutines.
As a comparison the error in a second-order finite difference
solution using the same gpatial resolution would be of order
(s

In all of the tests that follow a flat wall is perturbed in time
to a specified configuration and height. With the target height,
a maximum velocity, and a set acceleration (deceleration) as
input, a conivoller adjusts the acceleration {tums it on or off
or changes 113 sign) to ensure that the maximum velocity is not
exceeded and that the wall arrives at its target height with
zero velocity.

£y, = target height
£, = maximum velocity
E, = set acceleration.

In the second test the bottom wall is perturbed to the configu-
ration used previously:

After 30 time units (300 steps), wall-normal and spanwise
velocities decay to zero and the streamwise solution converges,
satisfying the Poisson equation (3.12) to within 107", See Ta-
bie V.

3.2.2. Dynamic tests. The tests of subsection 3.2.1 validate
the coordinate transformation, but only in a static sense, con-
firming global convergence to a known steady solution. The
decay rate tests of subsection 3.1 confirm the accuracy of the
solution locally in time, but the test cases do not depend upon
the transformation. Missing is a test of the time accuracy of
the time-dependent transformation.

For a direct test of the algorithm, including the explicit time
dependence of the boundary conditions, consider flow in a
channel with an accelerating wall. As dictated by the solenoidal
condition, velocity of the lower wall is matched by an identical
velocity of the fluid through the upper wall. In the case of a
channel with flat walls, the boundary conditions for all Fourier
modes but the zeroth are zero, which simplifies the structure
of the disturbance: spanwise velocities are zero and streamwise
velocity depends only upon x;. The solenoidal condition then
dictates that wall-normal velocity everywhere in the channel
he equal to the velocity of the lower wall. Because the second
component of velocity is determined trivially through prescrip-
tion of the boundary conditions, the problem is essentially
one-dimensional.

In the compuiational frame, the evolution eguation for mean
streamwise velocity is

Uy _fopN_emt 1, 1l
ar <é)x,> 2 [2—.9(1‘)+1 Xz] ax;

L2 ['eu
Re|2—-e(n] o8

Representing L/,(x,, #) in Chebyshev space, treating the viscous
term implicitly and the convective term explicitly, (3.15) ts

(3.15)

_ ﬁ 2 : 2| Frntl
([ Re [2 — 8(1‘””)] b ) Uik
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FIG. 5, One-dimensional, steady Stokes flow aver a spanwise varying wall (Table V): velocity contours with flow direction out of the page.

|, & At | are
'[1 3 ([2“30“1)“]'9 D)] i)

+ f(k) (3.16)
Y

t= <6x. ®=0, 3.7
0 (a®0)

D is a spectral representation of the convolution operator:

2 b

RS
5,\72

(3.18)

Boundary conditions are zero and the initial condition is a
parabolic profile:

Uk, =0,t=0)=05 Uitk=1,1=0)=—-05. (3.19)

The discretization provides only first-order accuracy in time,
but the solver is inexpensive, allowing for a small time incre-
ment. This solution is advanced in time and the results compared
with a flow simulation (using the third-order Runge—Kutta
integrator). See Table VI.

During the runs flow perturbations (deviation from the initial
parabolic) are of order 1072 and differences in the two solutions
never exceed 1074

3.3. The Non-canonical Channel: Higher-Dimensional
Flows

3.3.1. Stokes flow. The Stokes approximation (no convec-
tion) is valid for low Reynolds munber flows across any wall
geometries, provided the wall functions are smooth and the
wall perturbations not too large. First is a test of flow over
a two-dimensional surface which varies sinusoidally in the
streamwise direction:

X

h(x, H = el#) sin (2?—) (3.200
I

The lower wall is perturbed in time from flat to its final
configuration and height. See Table VII. After 30 time units
(600 steps), transients due to the velocity of the wall decay to
zerc and the two-dimensional flow converges to a steady sclu-
tion {to within round-off error). The salient features of the flow
are corroborated by small perturbation theory [26]: streamlines
are in phase with the walls (Fig. 6)

TABLE VI
Box No. of
Flow/wall parameters Time parameters dimensions  grid points
Re=12 Aljgoner = 1O X 1078 Ly =2m N =16
g = 0.2[1 — cos(D)] Alygona = 1.0 X 107 =2 Ny = [T
&= 0.2[sin(1)] reZ Iy =27 N: =16
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TABLE VI

Flow/wall parameters  Time parameters  Box dimensions  No. grid points
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TABLE VIl

Flow/wall parameters Time parameters Box dimensions

Na. grid poiats

Re=2 A = 0.05 Li=x Nyo=32,
£, =012 7 =29 L=2 N, = 33
2y, B = 0.0] L= N =16

Nate. See Fig. 6.

Second is a test of flow over a three-dimensional Gaussian
protuberance located in the middle of the lower wall (x¥, = n/4):
h(xy, X3, 1) = £(f)ee 1= (320

See Table VIIL. Even though the channel is shortened 1o L, =
7/2, flow is under-resolved in the streamwise direction {due to
the compiexity of the wall function). The result is non-zero
divergence of order 1077, Nonetheless, the solution converges
to within 1077, and the flow characteristics match that which
is predicted by small perturbation theory. Flow near the lower
wall is symmetric about the centerline of the protuberance,
streamwise as well as spanwise, corroborating the Stokes ap-
proximation (Fig. 7-9). The protuberance creates local pressure
maxima on its upstream side which slows the fluid on the
approach and accelerates it over the top and around the sides.

3.3.2. Separated flow. Last is a simulation of higher Reyn-
olds number flow over a Gaussian protuberance. The Reynolds

Re=2 Ar=0.02 L.=§ N, =40
e, =0.10 T=15 =2 Ny=133
: k1
£ g =001 L:=3 Ny =40

=019

Note. See Figs. 7-9.

number (Re = 2083) is high in the sense that it is three orders
of magnitude above that used iun the tests of Stokes flow; how-
ever, it is still below the value which demarks transitional flow.
The protuberance is located in the middle of the lower wall
(xF = 72, x¥ = w/d)

hx), x, 1) = E(I)e‘”_z[‘ﬂ"*’:')z'*(xj-,n;)}]_ (3.22)

Results of the pseudospectral (PS) simulation are compared
with a solution obtained by Mason and Morton {27] using a
finite-difference (FD) method. The parameter values used in
the PS simulation are listed in Table IX.

Table X provides a comparison of the relevant parameters.
The local Reynolds number is based on the height of the obstacle

FIG. 6. Two dimensional, steady Stokes flow over a streamwise varying wall (Table VII).
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Three-dimensional, steady Stokes flow over a Gaussian protuberance (Table VIII): wall-normal velocity in a plane parallel to and directly above

FIG. 8.
the lower wall.
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FIG. 9. Three-dimensional, steady Stokes flow over a Gaussian protuberance (Table VIII): spanwise velocity in z plane parallel to and directly above the

lower wall.

o215
h(x,, X_'-,) = 2
0 rix, x) Z o (3.26)
r{xy, xa) = 0 — Y + (x5 — 2D

] P, X)) < o

This shape corresponds closely to the Gaussian. The Gaussian
function is chosen because its higher derivatives are continuous
and its shape holds up better upon Fourier transformation: the
tails remain very close to zero (107%) as opposed to 107 in the
case of the cosine function of (3.26).

Figures 10 and 11 provide a quantitative comparison of the
two solutions. Figure 10 represents the final, steady sclution
of the PS simulation (at T = 16), following dissipation of
transienis associated with the initial upward velocity of the
boundary. These contour plots of streamwise vorticity indicate
nested pairs of vortices up- and downstream of the obstacle.
Closest to the wall are a pair with central upwash (upstream)
and a pair with central downwash (downstream). Stacked atop
these are weaker pairs of opposite sense. The maxima and
minima of streamwise vorticity are located at the wall: £0.91

TABLE IX |

Flow/wall paramneters Time parameters Box dimensions No. grid points

Re = 2083 Ar = 0.015 Li=n N, =80
£, = 0.12; ¢ = .18 7= 30 Ly=2 N, =65
. N _ T
£y = 0.05; &, = 0.1 L=3 Ny =32

Nore. See Figs. 10 and 12-15.

in View A and £0.61 in View B. The tip of the protuberance
is located at x, = —0.88, close to the tops of the upper pairs.

From Fig. 11 the shapes of the vortical structures obtained
from the FD simulation are almost identical. The maxima/
minima at the wall are £04(U/a) (upstream} and +0.29
(Uyf o) (downstrearn). Renormalizing with respect to local vari-
ables (U; and e4) yields values of £0.88(U)/e,) upstream and
=0.64(U/ey) downstream. All values from the PS simulation
are normalized by the outer variables. Renormalizing with re-
spect to local varables (U, = 0.12U; and =, = 0.12L,) yields
maxima/mimima of =0.91(U/e,) upstream and +0.61(U/e,)
downstreaim. The relative differences, then, in the maxima/
minima are 3.3% upstream and 4.7% downstream. Considering
the subsiantial {and unavoidable) differences in the prescrip-
tions for mean flow (and in the boundary layer thicknesses),
these results are quite close.

Figure 12 contains views of the surface stress pattern at the
lower wall (top panel from the FD simulation, third panel
down from the PS simulation) and views of the centerplane
streamlines (second panel down from FD and bottom panel
from PS). The flow direction is from left to right. The surface
stress streamlines are constructed from the stream- and span-
wise components of the wall shear stress and they indicate flow
direction close to the wall. Partial streamlines have been used

TABLE X
Re; e /o U Uy €,/8
PS 30 0.67 0.12 0.36
FD 30 0.66 03 1.2
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FIG. 10. Sieady, separated flow over a Gaussian protuberance (Table 1X): streamwise vorticity.

in the third and fourth panels to avoid bunching of the lines in
regions of convergent flow. From all four panels, a well-defined
zone of separated flow exists downstream of the protuberance,
and in general, flow characteristics from the PS simulation
match well with those from the FD simulation.

As a final observation, flow over the stationary obstacle
generates a normal flux of tangential vorticity at the bound-
ary [26]:

ad
= Sty ’lj‘
ax,

: (3.27)

wall

wall

n is a unit vector, normal to the lower wall. The alternating
tensor &;; is +1 when £, j, k are in cyclic order, —1 when i, j,
k are in anti-cyclic order, and 0 if any two of the i, j, k are
equal. The streamwise pressure gradient drives the flow and
contributes most to the production of boundary layer vorticity:

(3.28)

wall

Correspondingly, the steady solution contains a concentration

of negative spanwise vorticity at the top of the protuberance
{Fig. 13).

4. NUMERICAL STABILITY

As described in subsection 2.5, stability limits associated
with time advancement of the convective term are defined by
the CFL condition: a fluid particle may travel no more than
one computational cell length, width, or height per time step.
Additional (independent) stability restrictions do exist, precipi-
tated by the iterative method of solution of the elliptic equations
for pressure and velocity. To illustrate consider positive vertical
displacement of a flat wall (& > (). As in the dynamic test of
subsection 3.2.2, the problem is essentially one-dimensional,
involving one unknown, mean streamwise velocity, with a pre-
scribed mean streamwise pressure gradient and a prescribed
mean wall-normal velocity at the walls (and everywhere else
in the channel). The iterative method consists of splitting the
viscous operator into an invertible part and the remainder (sub-
section 2.1).

To determine the stability restrictions associated with this
procedure consider onity the final steady solution, valid for low
Reynolds number flows: the lower wall is displaced from its
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FIG. 11,

Steady. separated flow over a 3-D obstacle (from Mason and
Morton [27]): streamwise vorticity in transverse sections at the upstream ex-
tremity of the obstacle (top panel) and downstream extremity (bottom panel).
Solid contours are positive, dashed contours are negative. Contour intervals
are 1/10 of the maximum value, and the maxima are 0.4 {(Uy/¢) (upstream}
and 0.29 (Uy/er) (downstream). Couriegsy of P. J. Mason and B. R. Morton,
“Trailing vortices in the wakes of surface-mounted obstacles,”” [ of Fluid
Mechanics, (1987).

initial position but is stationary. Wall-normal velocity is then

zero everywhere and the convective term drops out of the
Navier—Stokes equation:

Af AL _ Ar 2\ 2\ e
(Iﬁl—a—éDl)U; "(kz)—(l-’rﬁ—e[(z_s) _1]D>Ul(k2)

+ f(ky) (4.1
@. =
b [(2) w0
0  (b#0)

Again, s denotes position in the iteration sequence, The iteration
matrix is ¢

Ui =gl + 1 @3)

o=(1-3p) (1 A2 T0).

The stability limit is defined by the eigenvalues of ¢ which
must be less than unity:
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FIG. 12. Separated flow (Tubles IX and X); Surface stress pattern at the

lower wall (top panel from Mason and Morton [27], third panel down from
the pseudespectral simulation} and centerplane streamlines (second panel down
from Mason and Morten, bottom panel from the pseudospectral simulation).
Courtesy of P. J, Mason and B. R. Morton, **Trailing vortices in the wakes
of surface-mounted obstacles,” J. of Fluid Mechanics, (1987}

(-80) (22 - 1]2)

| | denotes diagonalization. This yields the following re-
quirement:

<k (4.5

£<2-V2 (=058). (4.6)

From (4.6) stability depends only upon & (posttive displace-
ment of the Jower wall) and the steady sclution s space stable
[28]: stability is independent of . The limit on & is confirmed
heuristically by perturbing a flat wall in time, using different
values of N,. In all cases the CFL condition ensures stability
of the solution as long as £ <2 0.58. When £ = (.38 the solution
becomes unstable. For the general case in which the wall pertur-
bation is three-dimensional, the solution vector consists of all
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FIG. 13, Three-dimensional, steady, separated flow over a Gaussian proiuberance (Table 1X): spanwise vorticity in a plane parallel to and directly above

the lower wall.

three components of velocity, the pressure, the influence matrix
variables, and the tau correction variables:

Gl

u

vp,ll.r
ﬁ}
W=

(kl! k2, k3! [)° (47)
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The counterpart of (4.3) is a much larger, more complicated
nonlinear system:
W= ow + . (4.8)
With a stationary, perturbed wall the elements of the iteration
operator ¢ may depend upon &, Az, Re, L, ,5, and N, ;5. Compu-
tation of the spectrum of @ is not practicable; however, stability
diagnostics may be performed by considering the trivial solution
corresponding to quiescent fluid in a channel with a perturbed,
stationary wall:

Wl = QW 4.9)

WO = S(ki, by k) (8 1), 4.10)
The iteration operator is the same for the trivial solution of
(4.9) as it is for the non-trivial solution of (4.8). lteration of
the actual algorithm is tantamount to iterating on (4.9) and

provides an inexpensive way of determining what impact the
various parameters have on stability. Additionally, because the
trivial solution satisfies the solenoidal condition exactly, com-
ponents of the solution vector corresponding to the influence
matrix (¢,,) and the tau correction (7,) may be removed to
determine what impact these formulations have on the stabil-
ity restriction.

Using a random number generator to initially fill the solution
vector W with values of order 107 (round-off error), assigning
values to the parameters (e, A1, Re, Ly,3, N),3), and iterating
yield rough estimates of the stability limits: stable solutions
tend toward machine zero, while unstable solutions grow. First
is a test of a stationary, spanwise varying wall. The wall function
is defined by (3.11) and the parameter values are listed in
Table IV, Keeping the other parameters constant, & is varied
to determine a maximum allowable value. The maximum is
approximately 0.12. This limit is also obtained in the case of
a non-trivial solution,

Removal of (¢¥),, from the solution vector has no impact
upon the maximum allowable e; however, removal of 7, has a
substantial effect. Without the tau correction the stability Limit
for & (with all other parameter values as listed on Table 1V)
increases to well over 0.3. The tau error depends upon the
following parameters [20, 21):

Re- N2

—_ . 4.11

T A 10
From (4.11) the effects of 7, upon stability should become
most pronounced for high Reynolds number flows which re-
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TABLE X1

Test Table Converge Top Iterations Iterations Ar n = /T
Ne. No. tolerance (h:m:s) {max) (ave) {ave) T {min)
1a \Y 19" 1:28:00 14 6.997 0.1013 29.58 2975
1h v 107 :28:15 5 31238 0.1006 18.21 1.551
2a vII 1p-® 2:46:21 13 6.721 0.04899 29.10 5716
2b VII 1077 (:53:24 4 2.959 0.04932 17.85 2992

quire fine spatial and temporal resolution. To confirm this the
test is performed using parameters from Table IX and a
Gaussian wall function. The approximate limit for stability is
&max = .13, The shape of the wall (curvature) also affects the
stability. As an example, halving the standard deviation of
the Gaussian protuberance used in the Stokes flow simulation
(Table VIII) reduces &,,, from 0.17 to 0.10.

5. COMPUTATIONAL EXPENSE

Computations are performed on an IBM 9000-900 and on
an IBM SP2 with peak performances of 138 and 266 megaflops
and main memories of 1024 megabytes and 2 gigabytes, respec-
tively. The code, fully vectorizable, is ran serially (no paralleli-
zation). As in all flow simulations, run times are dependent
upon the parameters: spatial and temporal resolution, Reynolds
number. In the case of the non-canonical channel, run time is
also a function of the number of iterations required, which in
turn depends upon the resolution, the Reynolds number, the
wall perturbation (height, shape, velocity), and the desig-
nated accuracy.

Table X1 contains, as representative cases, statistics for simu-
lations of Stokes flow across a spanwise varying wall (Tests
la and 1b) and across a streamwise varying wall (Tests 2a and
2b). The sirulations are performed on an [BM SP2 node. As
an indication of the impact that designated accuracy has upon
computational expense, the tests are executed using two differ-
ent convergent tolerances, 107" and 1077, The simulations were
originally performed at the higher tolerances in order to confirm
spectral accuracy of the steady solution (subsection 3.2.1). From
sitbsection 2.5 the time accuracy of these low Reynolds number
flows is approximately A# (1073 at best), so that a convergence
tolerance of 1077 is certainly reasonable, at least for the tran-
sient solutions.

Run times (7.} for the streamwise varying wall are approxi-
mately double those for the spanwise varying wall because
the streamwise resolution is doubled, which (through the CFL
condition) halves the time step size. The simulation time (T}
corresponds to the lifespan of transients associated with the
initial motion of the lower wall: when these transients fall
below the convergence tolerance the test is terminated. The
maximum wall velocities (£ = 0.01) could have been increased

by a factor of five without affecting the CFL condition. Ac-
counting for the longer lifespan of the concomitant transients
the run times then wonld be reduced by a factor of three, so
that Test 1b, for example, would require approximately 10
minutes of cpu time.

Lowering the convergence tolerance decreases the run time
by reducing the number of required iterations and by reducing
the required simulation time (7). Lowering the tolerance from
107" to 1077 reduces run time by a factor of three. More
appropriate is a comparison of the ratio of run time (in minutes)
to simulation time: 1 = T,/T. From Table XI the tolerance
reduction increases efficiency by a factor of two.

In the simulation of higher Reynolds nomber, separated flow
(Table IX), the specified tolerance is 1077, As in all of the tests,
a maximum number of iterations is required when the wall is
still moving and is close to its target height. A representative
convergence history is obtained from the simulation of sepa-
rated flow at T = 2.032, as the Gaussian protuberance is rising
at its maximum velocity (¢ = 0.05) and is at 75% of its target
height (¢ = 0.09). For this test the convergence tolerance was
reset to 107", requiring 18 iterations.

Figures 14 and 15 are semi-logarithmic plots of the intermedi-
ate solution versus position in the iterative sequence {s). Desig-
nating the intermediate solution as w' and the converged solution
as u*, Fig. 14 is a plot of the maximum value of [u* — w*|
versus 5. Figure 15 is a plot of the root mean square (rms)
value of this difference, normalized by the rms value of u*:

l:f:f f;lﬂfgl (W — u*) d%, 4, d¥, |12 51
(5.1

Jo b T2 o) dx ds.d,

The solutions (u* and n¥) are represented in physical space.
The normalized values of Fig, 15 indicate relative error in the
intermediate solutions and, in this instance, it is the spanwise
component of velocity which leads the field.

As noted in the Introduction, the vltimate purpose of the
algorithm is to provide a means of analyzing interactions be-
tween a moving boundary and a turbulent boundary layer. At
a comparable Reynolds number (Re = 2000), the computational
box used in the simulation of separated flow (Table [X) will
(given a sufficient perturbation) sustain a turhulent field. The
low-order statistics obtained from these minimal fow units
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FIG. 14. A convergence history of the separated flow simulation at T =
2.032 (Table IX): position in the iterative sequence (s) is plotted on the hori-
zontal axis and the maximum vaiue of |u* — u*| is plotted on the vertical
{where u is the intermediate solution and u* the converged solution). The
three components of velocity are plotied separately.

match well with experimental data and the simpler wall layer
structures provide a clear picture of the associated dynamics
[29].

The data of Table XII address the issue of practicality in
connection with using a non-canonical, minimal flow unit. In
addition to the algorithm associated with a non-canonical chan-
nel (NON), one has been written for the canonical channel
(CAN). Also a primitive variables, pseudospectral formulation,
it has been used to generate a turbulent field in a box of dimen-
sions L),; = (m, 2, #/2) at a Reynolds number of 2000. Spatial

LiL
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FIG. 15. A convergence history of the separated flow simulation at T =
2.032 (Table IX): position in the iterative sequence {s) is plotted on the hori-
zontal axis and the rms value of Ju* — u*|, normalized by the rms value of
u*, is plotted on the vertical (where o’ is the intermediate solution and u* the
converged solution). Refer to Eq. (5.1). The three components of velocity are
plotted separately,
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TABLE XII
Test no. Code N N, N, fepu (i) %l
1a CAN 48 65 24 0.10183
1b NON 43 65 24 0.25867 61.15
2a CAN 30 65 32 0.23150
2b NON &0 65 32 0.60633 61.76

resolution requirements for the turbulent field are listed in Table
XII (Test la). Also listed are the resolution requirements for
the same box with a Gaussian wall function (Test 2b).

#.pu in Table XII is the cpu time per time step (three substeps),
averaged over 100 steps (300 substeps). The runs were per-
formed on an SP2 node. The cpu times listed for Tests 1b and
2b (NON) are measures of expense per step without iteration.
%] is the percentage of cpu time consumed during that portion
of the algorithm which falls within the iteration loop (Fig. 2).
Given i iterations, the total cpu time per step, then, is [1 +
(i — 1%I/1000] £

Several comparisons are appropriate. From a purely computa-
tional standpoint, the NON algorithm is approximately 2.6 times
more costly per step, without accounting for iteration expenses,
comparing Test la and 1b, Test 2a and 2b. Preliminary simula-
tions using the given box with a Gaussian wall function and a
turbulent field indicate that an average of four iterations per
substep will maintain an accuracy of 107° (~A#%). Using this
value, the NON algorithm becomes approximately 7.3 times
more costly (again, comparing Test la and 1b, Test 2a and 2b).

From a practical standpoint the comparison must be made
between Test [a and Test 2b. Along with the finer spatial
resolution comes finer temporal resolution. The ratio of the
average time step size of Test 1a to that of Test 2b is approxi-
mately £3. Using this ratio and assuming an average of four
iterations per substep, the NON algorithm becomes 28 times
more costly per unit of simulation time. Conventional analyses
of turbulent flows are statistical, requiring simulation times of
approximately T = 200. This simulation consumes 103 h of
cpu time using the CAN algorithm (Test 1a); using the NON
algorithm (Test 2b) will require 300 h.

6. REMARKS

Clearly, a statistical analysis of turbulent flow in a channel
with a three-dimensional (e.g., Gaussian) wall function will
have to be performed judiciously. One realizable sofution to
the problem of expense is parallelization: farming out the multi-
ple FFTs and matrix inversions which are executed during
each iteration. A full {(as opposed to a minimal) flow unit has
dimensions of L,,; = (4w, 2, 2m). Kim et al. used resolutions
of M3 = (192, 129, 160) in their simulation of statistically
stationary flow in this full flow unit, requiring approximately
250 CRAY hours per run [5]. In absolute terms then, the addi-
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tional expense attached to resolving a three-dimensional wall
is offset by beginning with a minimal flow unit.

A major factor with respect to expense, the increase in resolu-
tion requirements associated with a non-trivial boundary is a
problemn intrinsic in any direct method which enforces exact
boundary conditions without modeling. In the case of a two-
dimensional, spanwise varying wall {riblets), resolution require-
ments for the wall function are no greater than the requirements
for resolution of the turbulence and so expense is increased by
a factor of approximately 5.6 {(assuming an average of three
iterations per substep).

Coupled with the Chebyshev—tan formulation, the iterative
method is efficient but does not permit an obvicus means of
raising those stability limits which are dependent upon & (Sec-
tion 4.0). Presumably, changing to a cellocation formulation
in which a large (N, X N; X N;)* matrix is tterated upon would
provide this opportunity. Then, for example, a conventional
Richardson method would allow for a vartable relaxation pa-
rameter. However, the impact of the tau correction upon stabil-
ity is significant, and the remedy for this problem is not so
evident. Exact enforcement of the solenoidal condition is itself
a requirement for stability. Solving for the primitive vanables,
even by collocation, requires a tau correction and the problem
of stability dependence upon the tau error only assumes a
different guise, no less daunting. A velocity—vorticity formula-
tion poses its own, seemingly intractable problems.

Offsetting stability limitations and problems of expense is
the unique opportunity that the algorithm provides for the study
of transients associated with a variety of flows (laminar, transi-
tional, turbulent) over a variety of surfaces (bumps, dimpies,
troughs, ridges) which move in time. The lifespans of these
transients are an order of magnitmde less than the previously
mentioned requirements for statistically stationary, turbulent
flows. These simulations may be performed affordably with
very little preliminary work (compared to the task of devising
equivalent experiments in the laboratory), and they provide
new access to cornputational data from direct simulation for a
broad class of praoblems,
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